RESEARCH ARTICLE


Predictive Performance of two Measures of Prognostic Mortality of Cancer Patients in Intensive Care Unit in Jordan: A Comparative Single-Centre Study



Issa M. Almansour1, *
iD
, Mohammad K. Aldalaykeh2
iD
, Zyad T. Saleh1
iD
, Khalil M. Yousef1
iD
, Mohammad M. Alnaeem1
iD

1 Department of Clinical Nursing, School of Nursing, The University of Jordan, Jordan. Amman 11942-Jordan
2 TDepartment of Mental Health, 2The University of Science and Technology, Amman 11942-Jordan


Article Metrics

CrossRef Citations:
1
Total Statistics:

Full-Text HTML Views: 1253
Abstract HTML Views: 502
PDF Downloads: 119
Total Views/Downloads: 1874
Unique Statistics:

Full-Text HTML Views: 650
Abstract HTML Views: 222
PDF Downloads: 102
Total Views/Downloads: 974



Creative Commons License
© 2020 Almans et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Department of Clinical Nursing, School of Nursing, The University of Jordan, Jordan. Amman 11942-Jordan, Tel: +962 6 5355000; E-mail:i.almansour@ju.edu.jo,


Abstract

Background:

Information is presently insufficient about using Acute Physiology and Chronic Health Evaluation (APACHE) mortality predicting models for cancer patients in intensive care unit (ICU).

Objective:

To evaluates the performance of APACHE II and IV in predicting mortality for cancer patients in ICU.

Interventions/Methods:

This was a retrospective study including adult patients admitted to an ICU in a medical center in Jordan. Actual mortality rate was determined and compared with mortality rates predicted by APACHE II and IV models. Receiver operating characteristic (ROC) analysis was used to assess the sensitivity, specificity and predictive performance of both scores. Binary logistic regression analysis was used to determine the effect that APACHE II, APACHE IV and other sample characteristics have on predicting mortality.

Results:

251 patients (survived=80; none-survived=171) were included in the study with an actual mortality rate of 68.1%. APACHE II and APACHE IV scores demonstrated similar predicted mortality rates (43.3% vs. 43.0%), sensitivity (52.6% vs. 52.0%), and specificity (76.3%, 76.2%), respectively. The area under (AUC), the ROC curve for APACHE II score was 0.714 (95% confidence interval [CI] 0.645–0.783), and AUC for APACHE IV score was 0.665 (95% CI 0.595–0.734).

Conclusions:

As APACHE ӀӀ and ӀV mortality models demonstrate insufficient predicting performance, there is no need to consider APACHE IV in our ICU instead of using APACHE ӀӀ as it has more variables and need longer data extraction time.

Implications for Practice:

We suggest that other approaches in addition to the available models should be attempted to improve the accuracy of cancer prognosis in ICU. Further, it is also required to adjust the available models.

Keywords: Cancer, Intensive care unit, Mortality prediction, APACHE ӀӀ, APACHE ӀV, Chronic cardiovascular and circulatory disease.